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A B S T R A C T

We investigate the memory properties of discrete sequences built upon a finite number of states. We find that
the block entropy can reliably determine the memory for systems modeled as Markov chains of arbitrary finite
order. Further, we provide an entropy estimator that remarkably gives accurate results when correlations are
present. To illustrate our findings, we calculate the memory of daily precipitation series at different locations.
Our results are in agreement with existing methods being at the same time valid in the undersampled regime
and independent of model selection.
1. Introduction

Stochastic modeling lies at the heart of many modern studies of
complex systems. In this approach, the detailed dynamics is replaced
by a set of transition probabilities that connect the states of the system
at two different times. Quite often, the resulting stochastic processes
can be modeled with the aid of discrete Markov chains [1], where the
transition probabilities to a future state depend only on the present
state and not on past states [2]. The broad applicability of this Marko-
vian dynamics runs across disciplines: fluctuation theory in statistical
physics [3], DNA sequence analysis in molecular biology [4], weather
forecast in meteorology simulations [5], or web searches in information
retrieval [6], just to mention a few.

However, this memoryless approximation is insufficient if one deals
with strongly correlated systems [7,8], whose next state depends not
only on the present one but also on a longer history of past states.
Higher-order Markov chains [9], which include a finite number 𝑚 of
past states to determine the transition probability to the next one, are
thus needed for an accurate characterization of systems with memory.
Recent examples of systems modeled with higher-order Markovian dis-
crete chains include Parkinsonian tremor time series [10], linguistically
detected emotional events [11], genomic polymorphisms for cancer
research [12], human navigation on the web [13] and autochemotactic
searchers [14]. It is therefore of utmost importance to have reliable
methods that faithfully determine the order or memory 𝑚 for a given
sequence of data [15].

This goal can be achieved in several ways. For the purpose of this
paper, we focus on information-theoretical methods. The widely used
Akaike information criterion (AIC) [16] is based on a loss function con-
structed from the Kullback–Leibler relative entropy. The loss function is
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then minimized to find a good estimate of 𝑚 [17]. Since this approach
views the transition probabilities from a frequentist perspective, the
Bayesian information criterion (BIC) uses instead Bayes factors to fur-
ther constrain the loss function [18]. While the AIC criterion is shown
to overestimate 𝑚, the BIC is biased towards overly simple models [19].
To overcome these difficulties we propose in this paper a new method
to determine the order of a Markov chain that best represents a given
series of data. Advantages of the proposed method include that it is
independent on model selection and sufficiently precise even in the
undersampled regime.

Central to our proposal is the block Shannon entropy [20]. Data are
grouped in blocks of a given size 𝑛 from which the entropy is extracted
using the probability of each block. When the total sequence length is
much larger than the number of possible blocks, such that all blocks
appear with sufficient statistical relevance, the maximum likelihood
estimator for the entropy works well. Nevertheless, sequences extracted
from real data can be short and the previous estimator is consequently
negatively biased [21]. There have been several attempts to derive un-
biased estimators for the entropy but, to the best of our knowledge, all
these proposals rely on the sequence being composed by independent
random states. What is needed is a faithful estimator being able to deal
with correlated systems, as inferred in this work.

Therefore, our contribution is twofold. First, we suggest a novel
method that determines the memory of a generic discrete sequence
when the series is described by a Markov chain of arbitrary order.
Second, we introduce an estimator suitable for the expected value
of any observable (like the entropy) that provides information of a
correlated system. We emphasize that both findings are independent
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Fig. 1. Sketch for the transition probabilities of two sequences with memory (a) 𝑚 = 1
and (b) 𝑚 = 2.

and constitute, by their own, interesting advances that do not rely
on each other. The calculation technique for the order of Markov
chains would still hold if another block entropy estimator is used in
any of the multiple contexts where these processes are relevant [22].
Additionally, our improved estimator can be applied to any model of
correlations (not necessarily a Markov chain) and is thus of interest
in situations where entropy is fundamental to understand the system’s
properties [23].

The paper is organized as follows. In Section 2 we develop the main
relation between the block entropy and the order of a Markov chain.
We then explain the method to extract the order from the entropy
estimator, based on a linear relation between the block entropy and
the order, whose proof is left for Appendix. In Section 3 we develop
the algorithm to estimate the block entropy from a series of correlated
data. In Section 4.1 we present a case study where we determine the
memory of a series constructed numerically, while in Section 4.2 we
apply the method to determine the order of daily precipitation series,
comparing with the results found within the BIC approach. Finally,
Section 5 contains our conclusions.

2. Relation between block entropy and memory

Consider a discrete random variable 𝑋 with 𝐿 possible outcomes,
{𝑧𝑖}, 𝑖 ∈ {1,… , 𝐿}. Let  = (𝑋1,… , 𝑋𝑁 ) be a sequence of time-ordered
observations, where 𝑁 is the sequence size. Then,  has memory 𝑚 ≥ 1
if the transition probabilities satisfy

𝑃 (𝑋𝑠 = 𝑧𝑗 |𝑋𝑠−1 = 𝑧𝑙 ,… , 𝑋1 = 𝑧𝑘) =

𝑃 (𝑋𝑠 = 𝑧𝑗 |𝑋𝑠−1 = 𝑧𝑙 ,… , 𝑋𝑠−𝑚 = 𝑧𝑟),
(1)

with 𝑠 the time or position in the series. For the case 𝑚 = 0 the
probabilities 𝑃 (𝑋𝑠 = 𝑧𝑗 ) are independent for all 𝑠. The sequence is
termed Markovian if 𝑚 = 1 in Eq. (1). Values 𝑚 > 1 correspond to
higher-order Markov systems, which are the focus of this work. In
Fig. 1(a) we illustrate the transition probabilities for a generic sequence
with 𝑚 = 1: the outcome probability at time 𝑠 depends only on
the previous state at time 𝑠 − 1 (red arrow). Fig. 1(b) is a graphical
representation for the case 𝑚 = 2, where now the probability to observe
the system in a given state at time 𝑠 depends on states at both previous
times 𝑠 − 1 and 𝑠 − 2 (red arrows).

In what follows, we consider homogeneous Markov chains for which
the 𝐿𝑚+1 transition probabilities of Eq. (1) are independent of time
index 𝑠 and the conditional probabilities are then uniquely determined
by the states {𝑧𝑖}. Furthermore, we will only consider the stationary
case and therefore neglect transient effects.

Given a long sequence  it is not an easy task to determine the
order 𝑚 by a direct application of Eq. (1) since one should check
a growing number of relations as 𝑚 is increased. However, a much
more efficient procedure stems from an analysis of the block Shannon
2

entropy [24,25]. Let us form overlapping blocks in  of size 𝑛 ≥ 1. The
𝑗th block is then 𝐵(𝑛)

𝑗 = (𝑋𝑗 ,… , 𝑋𝑗+𝑛−1) with 1 ≤ 𝑗 ≤ 𝑁 − 𝑛 + 1 ≡ 𝑁𝑛.
There exist 𝐿𝑛 distinct possible blocks of size 𝑛, which we denote as
{𝑏(𝑛)𝑖 }1≤𝑖≤𝐿𝑛 . All observed blocks {𝐵(𝑛)

𝑗 }𝑗=1,…,𝑁𝑛
in the series  belong to

the set {𝑏(𝑛)𝑖 }1≤𝑖≤𝐿𝑛 . The block Shannon entropy is defined by

𝐻𝑛 = −
𝐿𝑛
∑

𝑖=1
𝑝(𝑏(𝑛)𝑖 ) log(𝑝(𝑏(𝑛)𝑖 )), 𝑛 ≥ 1, (2)

where 𝑝(𝑏(𝑛)𝑖 ) is the probability of appearance of the block sequence 𝑏(𝑛)𝑖 .
We use the convention that 𝐻0 ≡ 0.

The key point of the proposed method to determine the order of a
stochastic process is to realize that 𝐻𝑛 is a linear function of 𝑛 for 𝑛 ≥ 𝑚
if and only if the sequence has memory 𝑚 (see Appendix A for a proof).
Therefore, we can write

𝐻𝑛 = (𝐻𝑚+1 −𝐻𝑚)(𝑛 − 𝑚) +𝐻𝑚 𝑛 ≥ 𝑚 ≥ 0, (3)

which, for the independent case (𝑚 = 0), reduces to the known
expression for the entropy rate per symbol [26]

𝐻𝑛 = 𝑛𝐻1 𝑛 ≥ 1. (4)

For the general case 𝑚 > 0 the following procedure yields an
accurate assessment of 𝑚. Given a trial memory 𝜇 = 0, 1, 2,… we define
the trial entropies 𝜇(𝑛) by the relation:

𝜇(𝑛) = (𝐻𝜇+1 −𝐻𝜇)(𝑛 − 𝜇) +𝐻𝜇 𝑛 ≥ 𝜇. (5)

Now, according to Eq. (3), 𝜇(𝑛) would be equal to 𝐻𝑛 for 𝑛 ≥ 𝜇 if the
series  could be represented by a Markov chain of order 𝜇. Therefore,
if we consider the mean squared error

𝛥𝜇 = 1
𝑛max − 𝜇 + 1

𝑛max
∑

𝑛=𝜇
(𝜇(𝑛) −𝐻𝑛)2, (6)

we find that 𝛥𝜇 vanishes for 𝜇 ≥ 𝑚, independently of the value of the
cutoff 𝑛max. Hence, the criterion to find the order 𝑚 of the sequence 
is

𝑚 = min({𝜇 ∶ 𝛥𝜇 = 0}). (7)

In contrast to the BIC and AIC methods, where the loss function
depends on the model selected, Eq. (7) is independent of any selection
procedure. For memory determination, both AIC and BIC methods are
generally used along with a comparison among possible models suitable
for a given sequence, whereas our proposed method provides an exact
result for discrete random variables. If the system is naturally described
with a continuous random variable, we first need to discretize this
variable and the results obtained with Eq. (7) will depend on the binsize
used for the discretization.

As an example of an explicit calculation of 𝑚, in Fig. 2 we show
results for a binary system (𝐿 = 2) and memory 𝑚 = 3. The 23+1 = 16
transition probabilities are chosen randomly from a uniform distribu-
tion in the interval (0, 1) (and multiplied by a common factor in order
to fulfill the necessary normalization conditions). We plot in the main
panel with color lines the trial entropy 𝜇(𝑛) given by Eq. (5) for
different values of 𝜇. For comparison, the exact block entropies 𝐻𝑛,
computed from the transition probabilities, are also shown with black
dots. Clearly, the trial entropies 𝜇(𝑛) coincide for 𝜇 ≥ 3 with the
exact block entropy 𝐻𝑛 in agreement with the memory of the process.
Alternatively, the inset of Fig. 2 shows that the mean squared error 𝛥𝜇
vanishes for 𝜇 ≥ 3. Therefore, Eq. (7) is met and the memory is 𝑚 = 3,
as expected.

This particular example is based on a particular set of transition
probabilities drawn from a uniform distribution. We stress that for a
different set of transition probabilities the curves in Fig. 2 would change
quantitatively but the condition 𝛥𝜇 = 0 for 𝜇 ≥ 3 will always hold for
a system with memory 𝑚 = 3. As a consequence, the method is robust
against strong variations of the transitions between states.
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Fig. 2. Block entropies 𝐻𝑛 (dots) and 𝜇(𝑛) (𝜇 = 0,… , 4 with different colors) versus
block size 𝑛 for a binary sequence, 𝐿 = 2, with memory 𝑚 = 3 and transition
probabilities chosen randomly from the interval (0, 1). Inset: Mean squared error 𝛥𝜇 as
a function of the trial memory 𝜇. The proposed method determines the true memory
from the condition min({𝜇 ∶ 𝛥𝜇 = 0}), which is satisfied at 𝜇 = 3.

It should be clear that in this example the determination of the
memory 𝑚 has been very efficient because we had access to the true
block entropies 𝐻𝑛, determined from the knowledge of the 𝐿𝑚+1 tran-
sition probabilities. In a case where this is not possible, for example,
if we are given a numerical sequence  of finite length 𝑁 , we would
need to replace the exact block entropies 𝐻𝑛 in Eqs. (5) and (6) with
appropriate estimators �̂�𝑛. As a consequence, a good performance
of our method requires a reliable estimator of the block entropies.
Unfortunately, this is not an easy issue since all the entropy estimators
reported in the literature have systematic biases that degrade the
performance of the method. In the next section, we will propose a
new entropy estimator that turns out to be particularly suitable for our
purposes of determining the memory of a higher-order Markov process.

3. Entropy estimator

Block probabilities and, hence, the Shannon block entropy, could
also be obtained with a sufficient precision if we had access to an
unlimited amount of data. However, data records are necessarily finite
and we must resort to other less accurate estimates of the entropy that
take into account this finite amount of data. Hereafter, we will use the
notation �̂� to denote a numerical estimator for an arbitrary random
variable 𝑎. We recall that an unbiased estimator is one for which ⟨�̂�⟩ =
𝑎, while for biased estimators the difference ⟨�̂�⟩− 𝑎 generally decreases
with the sample size 𝑁 .

A first attempt to estimate the entropy of a general sequence  is
to employ the maximum likelihood estimator (MLE),

�̂�MLE
𝑛 = −

𝐿𝑛
∑

𝑖=1
�̂�MLE(𝑏(𝑛)𝑖 ) log �̂�MLE(𝑏(𝑛)𝑖 ), (8)

where �̂�MLE(𝑏(𝑛)𝑖 ) = �̂�(𝑛)𝑖 ∕𝑁𝑛 is the relative frequency given by the
observed number of occurrences �̂�(𝑛)𝑖 for the block 𝑏(𝑛)𝑖 with respect to
the total number 𝑁𝑛 = 𝑁 − 𝑛+1 of overlapping blocks of size 𝑛 present
in .

Despite the fact that �̂�MLE is unbiased, �̂�MLE
𝑛 turns out to be bi-

ased [27] and this can lead to an extreme underestimation of 𝐻𝑛,
especially in the undersampled regime 𝑁𝑛 < 𝐿𝑛 where ⟨�̂�MLE

𝑛 ⟩ < 𝐻𝑛.
he estimation provided by this method can be considered reliable up
o 𝑛max ∼ log(𝑁)∕ log(𝐿).

There is not known unbiased estimator for the entropy [28] but
here is a large number of estimators that manage to improve the results
btained with the MLE [29], allowing one to increase their range of
alidity as given by 𝑛max. In particular, the coverage adjusted estimator
roposed by Chao and Shen [21] provides good results for sequences of
3

i

ndependent events. Here, we will present an estimator that generally
mproves the coverage adjusted estimator for systems with memory,
sing a combination of the Horvitz–Thompson adjustment [30] to
ccount for missing elements in the sequence and a correction to the
robabilities that takes into account correlations.

.1. Horvitz–Thompson correction

Consider a variable 𝐴(𝑏(𝑛)𝑖 ) that depends on block 𝑏(𝑛)𝑖 . We are
nterested in a numerical estimation of the sum of 𝐴 for all possible
locks, namely 𝑌𝑛 =

∑𝐿𝑛

𝑖=1 𝐴(𝑏
(𝑛)
𝑖 ). In a finite series , not all 𝐿𝑛 possible

values of 𝑏(𝑛)𝑖 will necessarily appear. To account for the missing blocks
in the data, Horvitz and Thompson [30] proposed to estimate 𝑌𝑛 by
summing only the contributions of the blocks that do appear in  and
weighting each term by the probability that the element is included in
:

𝑌 HT
𝑛 =

∑

𝑏(𝑛)𝑖 ∈

𝐴(𝑏(𝑛)𝑖 )

𝑃 (𝑏(𝑛)𝑖 ∈ )
, (9)

For a random sequence of length 𝑁 , memory 𝑚 = 0 (independent
events) and block size 𝑛 = 1, the probability of appearance for block
𝑏(1)𝑖 can be computed as

𝑃 (𝑏(1)𝑖 ∈ ) = 1 − (1 − 𝑝(𝑏(1)𝑖 ))𝑁 . (10)

In principle, Eq. (10) does not hold in the presence of correlations (𝑚 >
0). It does not hold either for 𝑚 = 0 and 𝑛 > 1 as the existing overlapping
etween consecutive blocks already induces correlations in the block
eries: e.g., in the case 𝐿 = 2 and 𝑛 = 3 with possible results 𝑧𝑖 = 0, 1,
he block (0, 0, 1) can only be followed by the blocks (0, 1, 0) and (0, 1, 1).
evertheless, we have checked in all our numerical simulations that the
orrections introduced by these effects are negligible in the limit 𝑁 ≫ 𝑛
see Appendix B).

Using Eqs. (9) and (10) in Eq. (2), one arrives at the Horvitz–
hompson estimator for the block entropy

̂ HT
𝑛 = −

∑

𝑏(𝑛)𝑖 ∈

𝑝(𝑏(𝑛)𝑖 ) log(𝑝(𝑏(𝑛)𝑖 ))

1 − (1 − 𝑝(𝑏(𝑛)𝑖 ))𝑁𝑛
. (11)

3.2. Chao-Shen estimator

In general, the exact probabilities 𝑝(𝑏(𝑛)𝑖 ) that appear in Eq. (11)
re not known. Thus, it is necessary to replace them by their estima-
ors obtained from the sequence . The most basic estimator is the
aximum-likelihood-estimator �̂�MLE(𝑏(𝑛)𝑖 ) defined above. However, since

not all possible blocks are likely to appear in the finite sequence , we
note that ∑𝑏(𝑛)𝑖 ∈ 𝑝(𝑏(𝑛)𝑖 ) ≤ 1 but, by construction, ∑𝑏(𝑛)𝑖 ∈ �̂�MLE(𝑏(𝑛)𝑖 ) = 1.

herefore, it is convenient to correct the estimated frequencies before
ubstituting them into Eq. (11). Chao and Shen [21] proposed to use
nstead of �̂�MLE(𝑏(𝑛)𝑖 ) a new estimator �̂�(𝑏(𝑛)𝑖 ) obtained by multiplying
�̂�MLE(𝑏(𝑛)𝑖 ) by the sample coverage �̂�𝑛,

�̂�(𝑏(𝑛)𝑖 ) = �̂�𝑛�̂�
MLE(𝑏(𝑛)𝑖 ). (12)

he new estimator is requested to satisfy the condition ∑

𝑏(𝑛)𝑖 ∈ �̂�(𝑏(𝑛)𝑖 ) =

𝑏(𝑛)𝑖 ∈ 𝑝(𝑏(𝑛)𝑖 ). From Eq. (12) and using the normalization condition of
he MLE estimator, one finds that

̂𝑛 =
∑

𝑏(𝑛)𝑖 ∈

𝑝(𝑏(𝑛)𝑖 ) (13)

epresents the total probability for the occurrence of the blocks ob-
erved in 𝑆. ∑𝑏(𝑛)𝑖 ∈ 𝑝(𝑏(𝑛)𝑖 ) < 1 implies that there exist unseen blocks

n the data and this is an error source for the estimation of 𝐻𝑛.
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Again, as the exact values of 𝑝(𝑏(𝑛)𝑖 ) are not known, Eq. (13) cannot
be used to compute �̂�𝑛 for a given sequence 𝑆. The Good–Turing
estimator [31] can be used as an estimate for the sample coverage,

�̂�GT
𝑛 = 1 −

𝑁 (𝑛)
1

𝑁𝑛
, (14)

where 𝑁 (𝑛)
1 is the number of blocks of size 𝑛 that appear only once in

the sequence . Substituting Eq. (12) into Eq. (11) and using Eq. (14),
one finds the Chao–Shen entropy estimator

�̂�CS
𝑛 = −

∑

𝑏(𝑛)𝑖 ∈

�̂�GT
𝑛 �̂�MLE(𝑏(𝑛)𝑖 ) log(�̂�GT

𝑛 �̂�MLE(𝑏(𝑛)𝑖 ))

1 − (1 − �̂�GT
𝑛 �̂�MLE(𝑏(𝑛)𝑖 ))𝑁𝑛

, (15)

which has proven to provide very good results for independent se-
quences. However, we show below that Eq. (15) does not work so
well for correlated data as happens in systems with memory. This is
our motivation to present an improved estimator that does take into
account correlations.

3.3. Correlation coverage estimator

Our proposal follows Eq. (12) but �̂�𝑛 is now estimated using a
sequential procedure to tackle possible correlations in the sequence.
First, we consider the initial part of the sequence, namely 0 =
(

𝑋1, 𝑋2,… , 𝑋𝑁1

)

, with 𝑁1 ≡ 𝑛−1+𝑁𝑛∕2, such that 0 contains exactly
𝑁𝑛∕2 ≡ 𝑁 ′

𝑛 blocks of size 𝑛. We adopt the initial estimator �̂� (0)
𝑛 = 1.

After observing all the blocks 𝐵(𝑛)
𝑗=1,…,𝑁 ′

𝑛
that appear in 0, we take the

next observation 𝐵(𝑛)
+1 (we adopt the simplifying notation 𝐵(𝑛)

+𝑘 ≡ 𝐵(𝑛)
𝑁 ′

𝑛+𝑘
,

1 ≤ 𝑘 ≤ 𝑁 ′
𝑛), and modify the sample coverage according to

�̂� (1)
𝑛 =

⎧

⎪

⎨

⎪

⎩

�̂� (0)
𝑛 if 𝐵(𝑛)

+1 ∈ 0,

�̂� (0)
𝑛 − 1

𝑁 ′
𝑛 + 1

if 𝐵(𝑛)
+1 ∉ 0,

(16)

here the factor 1∕(𝑁 ′
𝑛+1) accounts for the probability that the observed

block 𝐵(𝑛)
+1 appears for the first time. We repeat the process with the next

observation 𝐵(𝑛)
+2 to modify the estimator

�̂� (2)
𝑛 =

⎧

⎪

⎨

⎪

⎩

�̂� (1)
𝑛 if 𝐵(𝑛)

+2 ∈ +1,

�̂� (1)
𝑛 − 1

𝑁 ′
𝑛 + 2

if 𝐵(𝑛)
+2 ∉ +1,

(17)

where +𝑖 = 0 ∪ (𝑋𝑁1+1,… , 𝑋𝑁1+𝑖). At variance with the coverage
given by Eq. (14), which is obtained from a single observation from the
whole series, this procedure has the advantage of iteratively updating
�̂� (𝑘)
𝑛 , 𝑘 = 0, 1, 2,… , 𝑁 ′

𝑛 based on the previously observed data. We
continue with this procedure until we arrive at the final value of the
correlation coverage (CC) estimator

�̂�CC
𝑛 ≡ �̂�(𝑁 ′

𝑛)
𝑛 = 1 −

𝑁 ′
𝑛

∑

𝑗=1

1
𝑁 ′

𝑛 + 𝑗
𝐼
(

𝐵(𝑛)
+𝑗 ∉ +(𝑗−1)

)

, (18)

where the indicator function 𝐼(𝑍) yields 1 if the event 𝑍 is true and 0
otherwise.

Finally, we substitute the corrected probabilities into Eq. (11) to
obtain the correlation coverage-adjusted entropy estimator

�̂�CC
𝑛 = −

∑

𝑏(𝑛)𝑖 ∈

�̂�CC
𝑛 �̂�MLE(𝑏(𝑛)𝑖 ) log(�̂�CC

𝑛 �̂�MLE(𝑏(𝑛)𝑖 ))

1 − (1 − �̂�CC
𝑛 �̂�MLE(𝑏(𝑛)𝑖 ))𝑁𝑛

. (19)

As an example, in Fig. 3 we show the exact entropy 𝐻𝑛 (dashed
black line and dots) as a function of the block size for a Markovian
(𝑚 = 1) binary process that takes the values 𝑧 = 0, 1, with transition
probabilities 𝑃0 ≡ 𝑝(0|0) = 𝑃 (𝑋𝑠 = 0|𝑋𝑠−1 = 0) = 0.7 and 𝑃1 ≡
𝑝(1|1) = 𝑃 (𝑋𝑠 = 1|𝑋𝑠−1 = 1) = 0.6. Note that, as expected, 𝐻𝑛 is
linear from 𝑛 ≥ 1. To compare with, we also depict the results obtained
4

Fig. 3. Exact Shannon entropy per block of size 𝑛 (dotted line) for a particular case of a
Markovian binary system with fixed transition probabilities 𝑝(0|0) = 0.7 and 𝑝(1|1) = 0.6.
A sequence of 𝑁 = 104 realizations is numerically generated from which we calculate
three different entropy estimators discussed in the main text. The best performance is
shown for the estimator that takes into account correlations (red dots).

Fig. 4. Comparison between the Chao–Shen entropy, panel (a), and our proposed
estimator for correlated systems, panel (b). Calculations are done for a binary system
with memory 𝑚 = 1 and varying transition probabilities 𝑝(0|0) ≡ 𝑃0 and 𝑝(1|1) ≡ 𝑃1.
Colors represent the departure of each estimator (computed from 104 realizations) from
the exact entropy, as measured by the mean squared error 𝜖(𝑃0 , 𝑃1) ≡

1
𝑛max

∑𝑛max
𝑛=1 (𝐻𝑛 −

�̂�𝑛)2 with 𝑛max = 17. Adding all values for 𝜖(𝑃0 , 𝑃1) using the grid size 𝛥𝑃 = 0.1, we
find that the overall error reaches a value of 4.65 in (a) but only of 0.90 in (b).

with the maximum-likelihood estimators given by Eq. (8) (green line
and dots), the Chao–Shen estimator of Eq. (15) (blue line and dots)
and our coverage-adjusted estimator proposed in Eq. (19) (red line and
dots), all calculated from a sequence of 𝑁 = 104 elements generated
numerically. Notably, the proposed estimator performs better than both
the MLE and Chao–Shen entropies and perfectly agrees with the exact
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result for a wide range of block sizes up to 𝑛 ≲ 17 while the MLE and
the Chao–Shen estimators deviate earlier from the exact 𝐻𝑛. In fact, the

LE estimator provides a good approximation up to a value of 𝑛 ≲ 12
hich is close to the expected limit 𝑛 ∼ log(𝑁)∕ log(𝐿) ∼ 13, while

he validity of the Chao–Shen estimator extends up to 𝑛 ≲ 13 and our
estimator even further. In Appendix C we present a similar comparison
for sequences with memory 2 and 3.

Departures from the exact value will show up only in the extremely
ndersampled regime (𝑁𝑛 ≪ 𝐿𝑛). In this case, every observation will
onstitute a different element. As a consequence, the sum in Eq. (19)
ill include all blocks in the second part and �̂�CC

𝑛 = 1 −
∑𝑁 ′

𝑛
𝑗=1

1
𝑁 ′

𝑛+𝑗
≃

1− ln(2) ≃ 0.307, for large 𝑁 . The proximity of the computed estimator
to this limiting value indicates a largely undersampled sequence and
determines the validity of the estimators to the coverage 𝐶𝑛.

For a more detailed comparison, we show in panel (a) of Fig. 4
the performance of the Chao–Shen estimator given by Eq. (15), and
in panel (b) that of the our correlation estimator from Eq. (19), both
calculated for a process with 𝑚 = 1 and 𝐿 = 2. We show the results as a
unction of all possible combinations of transition probabilities 𝑃0 and
1, the remaining probabilities being derived from the normalization
onditions 𝑝(1|0) = 1−𝑃0 and 𝑝(0|1) = 1−𝑃1. We measure the goodness
f each estimator for particular values of 𝑃0 and 𝑃1 with the mean
quared error 𝜖(𝑃0, 𝑃1) ≡

1
𝑛max

∑𝑛max
𝑛=1 (𝐻𝑛−�̂�𝑛)2. To improve the statistics

f the error, for each set of transition probabilities (𝑃0, 𝑃1) we generate
= 20 series, each with 𝑁 = 104 elements, and average the mean

quared error over the 𝑀 values. We use in all cases 𝑛max = 17 and
lot the resulting values in a color code. As shown in the figure, quite
enerally, Eq. (19) performs better than Eq. (15), with the possible
xception of the cases near 𝑃0, 𝑃1 ≈ 1∕2 (the independent case with
qual outcome probability), in which the latter is slightly better. The
verall performance is obtained by adding all values of 𝜖(𝑃0, 𝑃1) using
grid size 𝛥𝑃 = 0.1 in Fig. 4, resulting in an aggregated mean squared

rror five times larger for the Chao–Shen estimator as compared with
he correlation coverage-adjusted estimator.

. Determination of the memory of a sequence

Having demonstrated the usefulness of the estimator given by
q. (19) for Markovian systems, we now return to the method of
ection 2 for the determination of the memory in discrete sequences.

Suppose we are given a finite time series  that describes a phe-
omenon for which we would like to determine its memory 𝑚. As
xplained above, we will use the criterion given by Eq. (7) after
omputing 𝛥𝜇 following Eqs. (5), (6) and using a suitable estimator �̂�𝑛
or the block entropy 𝐻𝑛. For a given entropy estimator with a known
max and fixed 𝑁 and 𝐿, a meaningful linear fit for the calculation of
𝜇 as given by Eq. (6) requires that 𝜇 ≤ 𝑛max − 2 (at least three points
re required for a meaningful fit to a straight line). Since the chosen
ntropy estimator works for block sizes up to 𝑛max, our method can
rovide in principle an accurate result if the system under study has
emory 𝑚 ≤ 𝑛max − 2 but would fail otherwise.

In Figs. 3 and C.1 we have shown evidence that 𝑛CC
max > 𝑛MLE

max . Hence,
here exist three regimes for the estimation of the memory 𝑚: (i) if
≤ 𝑛MLE

max − 2, the fit to a straight line works with both MLE and CC
ntropy estimators; (ii) if 𝑛MLE

max −2 < 𝑚 ≤ 𝑛CC
max −2, the MLE estimator is

insufficient; (iii) if 𝑚 > 𝑛CC
max − 2 the memory is exceedingly large and

both estimators are inadequate.
It is worth mentioning that, in general, the value of 𝑛max for a

certain estimator is not the same for every sequence since 𝑛max may
depend on the transition probabilities. To be conservative, in this sec-
tion we use 𝑛CC

max = 𝑛MLE
max even though our estimator certainly provides

good results for larger block sizes.
Due to the limitations of all estimators we expect that 𝛥𝜇 is deter-

mined within an error that must be taken into account. To do so, we
consider 𝑀 series of data  (𝑖), 𝑖 = 1,… ,𝑀 , all with the same length,
5

Fig. 5. Mean squared error 𝛥𝜇 as a function of the trial entropy with 𝑛max = 10 after
veraging over 𝑀 = 20 realizations of a Markov chain with 𝑁 = 1000 data points,
emory 𝑚 = 1 and transition probabilities 𝑝(0|0) = 0.7 and 𝑝(1|1) = 0.6. In panel (a)

we use the MLE estimator while panel (b) is generated with the correlation coverage-
adjusted estimator. Error bars are given by the standard deviation. Importantly, our
proposed estimator clearly yields the memory value 𝑚 = 1 applying Eq. (20).

obtained either by repeating the experiment 𝑀 times or by splitting
the original series in 𝑀 disconnected sequences. For each sequence we
calculate the corresponding value of 𝛥(𝑖)

𝜇 . Then, we calculate the mean
𝛥𝜇 and standard deviation 𝜎𝜇 for the obtained values 𝛥(𝑖)

𝜇 . The condition
given by Eq. (7) is transformed into the criterion that the mean value
𝛥𝜇 is consistent with the value 0 within the standard deviation,

𝑚 = min(𝜇 ∶ 𝛥𝜇 − 𝜎𝜇 ≤ 0). (20)

4.1. Numerical simulation

We first present results arising from controlled numerical simula-
tions. We generate 𝑀 = 20 series of length 𝑁 = 1000 with memory
𝑚 = 1 and possible values 𝑧 = 0, 1 (𝐿 = 2). We show only results
corresponding to 𝑝(0|0) = 0.7 and 𝑝(1|1) = 0.6 but similar conclusions
are obtained quite generally for different values of the transition prob-
abilities. In Fig. 5 we plot the values of 𝛥𝜇 obtained using the method
explained above. In Fig. 5(a) we employ the MLE estimator for the
block entropy, while Fig. 5(b) uses the correlation coverage-adjusted
estimator. Remarkably, the MLE entropy is not able to yield any useful
result, and it is thus not possible to determine the sequence memory
since Eq. (20) is never satisfied. In stark contrast, the calculation of 𝛥𝜇
and 𝜎𝜇 using the entropy estimator given by Eq. (19) clearly shows that
the criterion Eq. (20) yields the correct result 𝑚 = 1.

In Fig. 6(a) and (b) we present results arising from similar numerical
simulations as before but now generating sequences with memory 𝑚 = 2
and 𝑚 = 5, respectively (same values of 𝑀 , 𝑁 and 𝐿 as before) and
transition probabilities chosen randomly from an uniform distribution
in the interval (0, 1). We plot the values of 𝛥𝜇 obtained using the corre-
lation coverage-adjusted estimator for the entropy. Again, the usage of
our proposed entropy estimator allows us to accurately determine the
memory of the system. Similar conclusions are generally obtained for
a different set of transition probabilities.

These numerical experiments illustrate the importance of having a
reliable entropy estimator to successfully apply the method of memory
determination.
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Fig. 6. Mean squared error 𝛥𝜇 as a function of the trial entropy with 𝑛max = 10 after
averaging over 𝑀 = 20 realizations of a Markov chain with 𝑁 = 1000 data points,
transition probabilities chosen randomly from an uniform distribution in the interval
(0, 1) and memory 𝑚 = 2 panel (a), and 𝑚 = 5, panel (b), using the method explained in
he main text with correlation coverage-adjusted estimator. Error bars are given by the
tandard deviation. Importantly, in both cases, our proposed entropy estimator clearly
ields the right memory value applying Eq. (20).

.2. Daily precipitations

We have thus far tested our proposed method only with numerically
enerated sequences of known memories. We now test the method with
eal data. It has been widely accepted that the occurrence (or not) of
recipitation can be modeled as a system of memory 1, but it is also
ell known that this assumption has several shortcomings [32]. There
ave been some attempts to improve this model by studying sequences
f daily data worldwide. It has been found [33] that the model memory
epends on the geographical location. Here, we select a few locations
nd compare the results with those obtained using the BIC method [34].

We collect data from the Global Historical Climatology Network
aily [35]. For each location, we record the available observation for
aily precipitation, setting the threshold at 0.1 mm to specify if a day
s rainy or not. This way we produce a time series with two states
𝐿 = 2) and length 𝑁𝑠 ≲ 25 000 (the exact value of 𝑁𝑠 varies for each
ocation). Then, this series is divided in 𝑀 = 5 sequences of equal

lengths 𝑁 = 𝑁𝑠∕5 and for each of this sequence we estimate the block
ntropies �̂�CC

𝑛 for 𝑛 = 1,… , 12, from which we obtain the mean values
̄𝜇 and their standard deviations 𝜎𝜇 . It should be noted that the use of
he correlation coverage estimator for the entropy allows us to obtain
eliable results up to 𝑛max = 12. If we had used the MLE estimator, this
imit value would have been 𝑛max ∼ 11.

In Fig. 7 we show the results obtained for four locations: Rome,
allas, Bangkok and Than Lwin. For the first two locations, our method
redicts 𝑚 = 1 whereas for the second two places the procedure
uggests that both series are better described with 𝑚 = 2. These results
re in excellent agreement with the BIC method (see Fig. 5 in Ref. [33])
nd consequently validate our technique for the memory determination
n real data sequences modeled with Markov chains of arbitrary order.

. Conclusions

We have developed a novel method to determine the memory of a
iscrete sequence. Importantly, the method is valid for both Markovian
6

Fig. 7. Results of the method explained in Section 2 applied to sequences of
data of daily precipitations for four locations: (a) Rome–Italy, (b) Dallas–USA, (c)
Bangkok–Thailand and (d) Than Lwin–Myanmar.

and non-Markovian systems. Since the technique relies on the calcula-
tion of the Shannon entropy as a function of the block size, it is crucial
to additionally propose an entropy estimator that gives good results
for correlated systems. To this end, we have introduced a correction
to the estimated probabilities to amend the source of error stemming
from unseen elements in small samples. Our estimator is shown to
significantly increase the accuracy of the entropy for systems with
memory. Both numerically generated sequences and real data series
have been used as benchmarks. These successful results will certainly
encourage further applications of the proposals discussed in this work.
It is left as a future project to present a more detailed comparison of our
entropy estimator with different estimators that have shown promising
results for independent sequences [36–39].
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Appendix A

A.1. Proof that if a sequence has memory 𝑚, then 𝐻𝑛 is a linear function for 𝑛 ≥ 𝑚

Since we consider only homogeneous sequences we will omit the time variable in this appendix. We will use the notation 𝑝(𝑥1,… , 𝑥𝑠) ≡ 𝑃 (𝑋1 =
1,… , 𝑋𝑠 = 𝑥𝑠), with 𝑥𝑖 ∈ {𝑧𝑗}1≤𝑗≤𝐿.

Let us calculate the difference between the block entropies 𝐻𝑛+1 −𝐻𝑛. Using 𝑝(𝑥1,… , 𝑥𝑛+1) = 𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)𝑝(𝑥1,… , 𝑥𝑛), we obtain

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥1,… , 𝑥𝑛+1)) +
∑

𝑥1 ,…,𝑥𝑛

𝑝(𝑥1,… , 𝑥𝑛) log(𝑝(𝑥1,… , 𝑥𝑛))

= −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)) −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥1,… , 𝑥𝑛))+

+
∑

𝑥1 ,…,𝑥𝑛

𝑝(𝑥1,… , 𝑥𝑛) log(𝑝(𝑥1,… , 𝑥𝑛)).

(A.1)

Because ∑

𝑥𝑛+1
𝑝(𝑥1,… , 𝑥𝑛+1) = 𝑝(𝑥1,… , 𝑥𝑛), the last two terms of the Eq. (A.1) cancel out. Thus,

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)). (A.2)

This is a general result, valid for any kind of sequence. Now, for a sequence of memory 𝑚 and for 𝑛 ≥ 𝑚, one has 𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛) =
𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛). Then, Eq. (A.2) becomes

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛))

= −
∑

𝑥𝑛−𝑚+1 ,…,𝑥𝑛+1

𝑝(𝑥𝑛−𝑚+1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)).
(A.3)

For homogeneous sequences, we can shift all indices on the right-hand side of Eq. (A.3) by an amount 𝑛 − 𝑚 ≥ 0:

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥1 ,…,𝑥𝑚+1

𝑝(𝑥1,… , 𝑥𝑚+1) log(𝑝(𝑥𝑚+1|𝑥1,… , 𝑥𝑚)). (A.4)

As far as 𝑛 ≥ 𝑚, the right-hand side of Eq. (A.4) is independent of 𝑛. Making the replacement 𝑛 → 𝑚 we arrive at

𝐻𝑛+1 −𝐻𝑛 = 𝐻𝑚+1 −𝐻𝑚, 𝑛 ≥ 𝑚, (A.5)

which proves that the dependence of 𝐻𝑛 on 𝑛 is linear for 𝑛 ≥ 𝑚, i.e., 𝐻𝑛 = 𝑎𝑛 + 𝑏 with constant parameters 𝑎 and 𝑏.

A.2. Proof that if 𝐻𝑛 is linear for 𝑛 ≥ 𝑚, then the sequence has memory 𝑚

Let 𝐻𝑛 be linear for 𝑛 ≥ 𝑚. Then, we can write 𝐻𝑛 = 𝑎𝑛 + 𝑏 or

𝐻𝑛+1 −𝐻𝑛 = 𝐻𝑚+1 −𝐻𝑚, 𝑛 ≥ 𝑚. (A.6)

Using the general result of Eq. (A.2) on the right-hand side of Eq. (A.6), we find

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥1 ,…,𝑥𝑚+1

𝑝(𝑥1,… , 𝑥𝑚+1) log(𝑝(𝑥𝑚+1|𝑥1,… , 𝑥𝑚)). (A.7)

For homogeneous sequences, we can shift all indices on the right-hand side of Eq. (A.7) by an amount 𝑛 − 𝑚 ≥ 0:

𝐻𝑛+1 −𝐻𝑛 = −
∑

𝑥𝑛−𝑚+1 ,…,𝑥𝑛+1

𝑝(𝑥𝑛−𝑚+1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛))

= −
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)).
(A.8)

We now apply Eq. (A.2) on the left-hand side of Eq. (A.8):
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)) =
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log(𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)), (A.9)

which implies that
∑

𝑥1 ,…,𝑥𝑛+1

𝑝(𝑥1,… , 𝑥𝑛+1) log
(

𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)
𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)

)

= 0, (A.10)

r
∑

1 ,…,𝑥𝑛

𝑝(𝑥1,… , 𝑥𝑛)
∑

𝑥𝑛+1

𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛) log
(

𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)
𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)

)

= 0. (A.11)

ecause of the log sum inequality [26], we know that the second sum of Eq. (A.11) is ≥ 0 and generally 𝑝(𝑥1,… , 𝑥𝑛) > 0. Hence, Eq. (A.11) holds
nly if
∑

𝑛+1

𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛) log
(

𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛)
𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛)

)

= 0 ∀𝑥1,… , 𝑥𝑛. (A.12)

Further, due to the log sum inequality, Eq. (A.12) is valid provided that 𝑝(𝑥𝑛+1|𝑥1,… , 𝑥𝑛) = 𝑝(𝑥𝑛+1|𝑥𝑛−𝑚+1,… , 𝑥𝑛) ∀𝑥𝑛+1, 𝑥1,… , 𝑥𝑛, ∀𝑛 ≥ 𝑚, which
means that the sequence has memory 𝑚.
7
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Appendix B

Given a sequence  of length 𝑁 , we calculate the probability that we observe the block 𝑏(𝑛)𝑖 of size 𝑛 as follows,

𝑃 (𝑏(𝑛)𝑖 ∈ ) = 1 − (1 − 𝑝(𝑏(𝑛)𝑖 ))𝑁𝑛 . (B.1)

Even though Eq. (B.1) is exact only when 𝑛 = 1 and the sequence memory is 𝑚 = 0, we have checked in all our simulations that the corrections
introduced by correlations when 𝑚 > 0 and 𝑛 > 1 can be neglected if 𝑁 ≫ 𝑛.

Fig. B.1. 𝑃 (1)
000 (black lines) for binary sequences with memory 𝑚 = 0 as a function of the probability 𝑝(0) for occurrence of outcome 0. For each combination of 𝑁 and 𝑝(0), we

enerate 𝐾 = 104 numerical sequences and calculate 𝑃 (1)
000 from 𝐾000∕𝐾, where 𝐾000 is the number of sequences where the block (0, 0, 0) appears at least once. We also plot with

blue lines 𝑃 (2)
000 = 1 − (1 − (𝑝(0))3)𝑁−2. We show results for 𝑁 = 100 in (a), 200 in (b), 500 in (c) and 1000 in (d). We observe that the black and blue curves overlap as 𝑁 grows.

Fig. B.2. 𝑃 (1)
000 (black lines) for binary sequences with memory 𝑚 = 1 as a function of the conditional probability 𝑝(0|0). For each combination of 𝑁 and 𝑝(0|0), we generate 𝐾 = 104

numerical sequences and calculate 𝑃 (1)
000 from 𝐾000∕𝐾, where 𝐾000 is the number of sequences where the block (0, 0, 0) appears at least once. We also plot with blue lines 𝑃 (2)

000
calculated from the transition probabilities. For all the cases considered we tale 𝑝(1|1) = 0.6. We show results for 𝑁 = 100 in (a), 200 in (b), 500 in (c) and 1000 in (d). We observe
that the black and blue curves overlap as 𝑁 grows.

As an example, we now assess the probability that the block (𝑋𝑠 = 0, 𝑋𝑠+1 = 0, 𝑋𝑠+2 = 0) ≡ (0, 0, 0) appears in  by generating 𝐾 numerical
sequences for fixed parameters 𝐿, 𝑚 and 𝑁 , and a particular set of transition probabilities. If the block (0, 0, 0) appears in 𝐾000 of those sequences,
then 𝑃 (1)

000 ≡ 𝑃 ((0, 0, 0) ∈ ) = 𝐾000∕𝐾. We note that for 𝐾 ≫ 1 𝑃 (1)
000 ≃ 𝑃 ((0, 0, 0) ∈ ). We compare this result with the value 𝑃 (2)

000 ≡ 1−(1−𝑝(0, 0, 0))𝑁−2,
where 𝑝(0, 0, 0) is the probability of occurrence of the block (0, 0, 0), which is computed from the transition probabilities.

In Fig. B.1 we plot the results for both 𝑃 (1)
000 and 𝑃 (2)

000 obtained from for binary sequences with 𝑚 = 0, as a function of 𝑝(0). We consider the cases
𝑁 = 100, 200, 500, 1000 in Figs. B.1(a), (b), (c) and (d), respectively, for 𝐾 = 104 repetitions.

In Fig. B.2 we show similar curves but now considering sequences with memory 𝑚 = 1. For each case, we fix 𝑝(1|1) = 0.6 and vary 𝑝(0|0) between
0 and 0.9.

The results plotted in both Figs. B.1 and B.2 clearly show that as 𝑁 increases the difference between 𝑃 (1)
000 and 𝑃 (2)

000 vanishes. We have verified
with our simulations that this holds for every block sequence and for different values of 𝑚. Therefore, Eq. (B.1) is an excellent approximation when
the size of the sequence is much larger than the size of the block, regardless of the memory value.

Appendix C

In Fig. C.1 we show the exact entropy 𝐻𝑛 for binary systems with memory 𝑚 = 2 in (a) and 𝑚 = 3 in (b). In both cases the transition probabilities
are chosen randomly from an uniform distribution (0, 1). As a comparison, we also show the results obtained with the MLE estimator given by Eq. (8)
(green line and dots), the Chao–Shen estimator given by Eq. (15) (blue line and dots) and our coverage-adjusted estimator proposed in Eq. (19)
(red line and dots), all calculated from a sequence of 𝑁 = 104 data points generated numerically.
8
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Fig. C.1. Exact Shannon entropy per block of size 𝑛 (dotted line) for binary systems with 𝑚 = 2 in (a) and 𝑚 = 3 in (b) with fixed transition probabilities chosen randomly from
an uniform distribution. A sequence of 𝑁 = 104 realizations is numerically generated from which we calculate three different entropy estimators discussed in the main text. The
best performance is shown for the estimator that takes into account correlations (red dots).
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